3.2088 \(\int \frac{1}{\sqrt{a+\frac{b}{x^4}} x^2} \, dx\)

Optimal. Leaf size=88 \[ -\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) \text{EllipticF}\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} \sqrt{a+\frac{b}{x^4}}} \]

[Out]

-(Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[a] + Sqrt[b]/x^2)*EllipticF[2*ArcCot[(a^(1/4)*x)/b^(1/4)],
 1/2])/(2*a^(1/4)*b^(1/4)*Sqrt[a + b/x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0282787, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {335, 220} \[ -\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) F\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} \sqrt{a+\frac{b}{x^4}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b/x^4]*x^2),x]

[Out]

-(Sqrt[(a + b/x^4)/(Sqrt[a] + Sqrt[b]/x^2)^2]*(Sqrt[a] + Sqrt[b]/x^2)*EllipticF[2*ArcCot[(a^(1/4)*x)/b^(1/4)],
 1/2])/(2*a^(1/4)*b^(1/4)*Sqrt[a + b/x^4])

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+\frac{b}{x^4}} x^2} \, dx &=-\operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^4}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{\sqrt{\frac{a+\frac{b}{x^4}}{\left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right )^2}} \left (\sqrt{a}+\frac{\sqrt{b}}{x^2}\right ) F\left (2 \cot ^{-1}\left (\frac{\sqrt [4]{a} x}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{2 \sqrt [4]{a} \sqrt [4]{b} \sqrt{a+\frac{b}{x^4}}}\\ \end{align*}

Mathematica [C]  time = 0.0383029, size = 77, normalized size = 0.88 \[ -\frac{i \sqrt{\frac{a x^4}{b}+1} \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{i \sqrt{a}}{\sqrt{b}}}\right ),-1\right )}{x^2 \sqrt{\frac{i \sqrt{a}}{\sqrt{b}}} \sqrt{a+\frac{b}{x^4}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b/x^4]*x^2),x]

[Out]

((-I)*Sqrt[1 + (a*x^4)/b]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[a])/Sqrt[b]]*x], -1])/(Sqrt[(I*Sqrt[a])/Sqrt[b]]*Sq
rt[a + b/x^4]*x^2)

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 86, normalized size = 1. \begin{align*}{\frac{1}{{x}^{2}}\sqrt{-{ \left ( i\sqrt{a}{x}^{2}-\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}\sqrt{{ \left ( i\sqrt{a}{x}^{2}+\sqrt{b} \right ){\frac{1}{\sqrt{b}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}},i \right ){\frac{1}{\sqrt{{\frac{a{x}^{4}+b}{{x}^{4}}}}}}{\frac{1}{\sqrt{{i\sqrt{a}{\frac{1}{\sqrt{b}}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(a+b/x^4)^(1/2),x)

[Out]

1/((a*x^4+b)/x^4)^(1/2)/x^2/(I*a^(1/2)/b^(1/2))^(1/2)*(-(I*a^(1/2)*x^2-b^(1/2))/b^(1/2))^(1/2)*((I*a^(1/2)*x^2
+b^(1/2))/b^(1/2))^(1/2)*EllipticF(x*(I*a^(1/2)/b^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{x^{4}}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b/x^4)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a + b/x^4)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{2} \sqrt{\frac{a x^{4} + b}{x^{4}}}}{a x^{4} + b}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b/x^4)^(1/2),x, algorithm="fricas")

[Out]

integral(x^2*sqrt((a*x^4 + b)/x^4)/(a*x^4 + b), x)

________________________________________________________________________________________

Sympy [C]  time = 1.54689, size = 37, normalized size = 0.42 \begin{align*} - \frac{\Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b e^{i \pi }}{a x^{4}}} \right )}}{4 \sqrt{a} x \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(a+b/x**4)**(1/2),x)

[Out]

-gamma(1/4)*hyper((1/4, 1/2), (5/4,), b*exp_polar(I*pi)/(a*x**4))/(4*sqrt(a)*x*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + \frac{b}{x^{4}}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b/x^4)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a + b/x^4)*x^2), x)